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AN ALTERNATE APPROACH TO AXIOMATIZATIONS OF

THE VON NEUMANN/NORGENSTERN CHARACTERISTIC FUNCTION*

by

Alain A. Lewis** and Raghu Sundaram**

1. Introduction

The concept of the characteristic function of a game - that gives us

an intuitive idea of the value of a coalition - is of central importance

in the theory of N-person cooperative games. In those cases where the

players have full knowledge of the structure of a game, in the sense of

knowing not only the various parameters but also the payoff functions of

the other players, the value of a coalition S, denoted v(S), is

defined to be the unique value of the two-person zero-sum game between

S and N - S. The function thus defined satisfies two properties.

and, in general, only these two properties: 
------

P1 v(0) - 0.

P2 If R, S E N, and R n S = 0, then v(R U S) > v(R) + v(S).

0

* This work was partially supported by Office of Naval Research Grant
NOOO-14-K-0216 at the Institute for Mathematical Studies in the Social
Sciences, Stanford University, Stanford, California and partially by
National Science Foundation Grant DMS-84-10456 at Cornell University.

** Department of Mathematics, White Hall, Cornell University, Ithaca, ,des

NY 14853.
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The first property states that no gain will be forthcoming from non-

participation. The second asserts that anything two disjoint coalitions

can achieve can be achieved by the union of the two, and possibly even

more could be achieved by the latter. N\

The characteristic function, however, does not tell us anything

about the behavior of the players involved. The situation gets even

more complicated if we drop the assumption that every player knows every

other player's payoff function, and assume merely that he has some, not

necessarily correct, perception of these. In this case, we have in

addition to the'""true game parametrized by the true payoff functions,

the game that different players perceive to exit. In the extreme case,

where no player knows anybody's else's payoff function, there are n

new games defined, one for each of the players. Associated with each of

these games is a characteristic function, vi, khich player i

perceives to be the true characteristic function, and upon which his

behavior is based. In this situation, the observed behavior can be

described in terms of some equilibrium theory, by determining v and

all the vi's.

1.1 The Classical Axiometization

The idea behind the procedure for determining the subjective charac-

teristic functions is the following: treat the coalitions of players as

if they were outcomes and find the preferences of each player among

probability mixtures of coalitions. If certain axioms are met, then a
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utility function exists which, when restricted to pure coalitions is a

characteristic function.

Definition I, A net M is a mixture space if it satisfies the

following conditions for all a, b in M and p, q in [0,1]:

(i) a(p)b is in M

(ii) a(p)b - b(1 - p)a

(iii) a(p)a - a

(iv) a(p)b - a(p)c => b = c

(v) a(p)[b(q)c] = fa(p/(p + q - pq](p + q - pq)c.

To elaborate, let A be any set of alternatives. Extend A to the

mixture space M of alternatives. Let I represent a binary ordering

on M, that satisfies the following axioms:

Al is a weak ordering on M.

A2 If a b, then a(p)c ! b(p)c for all P in (0,1) and for

all c in M, (a(p)c means the alternative a with probability

p and the alternative c with probability (1 - p)).

A3 If a(p)c L b(p)c for some p in [0,1], then a b.

A4 If a b I c, then there is p in [0,1] such that a(p)c - b.

(where x - y iff x y Y and y i x). Then I gives rise to a



amily of utility functions , U() on M, such that for each u

in U the following conditions are met:

U1 a b iff u(a) ' u(b).

U2 u(a(p)b) - p - u(a) + (1 - p) * u(b).

U3 u' is in U iff u' is a positive affine transformation

of U.

Assume now that A is the set of permissible coalitions of a finite

N-person cooperative game and M is, therefore, a probability mixture

of coalitions. Assume further that the payoff to each player in a

coalition is the average payoff to the members of that coalition and

that if a player chooses a probability mixture a(p)b, then he gets a

payoff from a according to the same rule with probability p and from

b with probability (1 - p). Finally, we impose the additional axiom.

A5 If a,b are in A, and a r) b = 0, then a U b a(p)b for

p - lal/la U bl.

Pick any u from the family of utility funtions satisfying AI-A5.

Define C(u) to be the class of set functions: v: M + IR,

v(R) . cIlR • [u(R) - u(0)] + I di , c > 0, d in IR, all i.
i6 R

It turns out that v is a characteristic function that v' is in C(u)

iff v' is a positive linear transform of v. More importantly Luce

and Adams (1956] have shown the following:

"*, ','.' , '., . q, '. ,!, * ,', ., " ,- - . . .,. ... ~ .



Theorem 1.1: Let v be a given characteristic function. Extend v

to the mixture space of coalitions by the definition v(a(p)b) =

p v(a) + (1 - p) - v(b). Define by the rule a b iff

[v(a)/JaI] ) [v(b)/Ibl]. Then satisfies axioms Al-AS, and v E C(u)

for u E U().

In effect, then, a preference relation over the mixture space of

coalitions that satisfies a given set of axioms generates an S-equivalent

class of characteristic function. Moreover, if a preference relation

over the mixture space of coalitions is based rationally on a subjective

characteristic function v, this preference relation will meet the

axioms and generate a class of characteristic functions S-equivalent

to V.

In this paper, we examine the relationship between axiomatic

structure and the characteristic function. In particular we shall

attempt to build up the characteristic function axiomatically, but using

weaker axioms than those used above. One axiom we shall be doing away

with altogether is that of defining the mixture space to extend to all

real probabilities - rational and irrational. Irrational probabilities

hold little intuitive appeal - it is hard to appreciate the value of

such a probability and difficult to visualize making sensible choices

between alternatives when such numbers are involved. Moreover, the

restriction to rational probabilities carries an added computational

feature: Every rational number is a recuraive or computable real number

and thus can be approximated recursively by a number theoretic function

whose values can be computed by a device of artificial intelligence

C" -%o
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known as a Turing Machine. Additionally, the rationals as a set of

recursive real numbers is recursively enumerable; what this means it

that there is an effective procedure to list the entire set of rationals

by an algorithm that codes the simulation of a Turing Machine. A

reference for recursive real numbers is the article by Rice [1954] and

an introduction to computability and Turing Machines can be found in

Rogers [1967]. Based on Shepherdson's [1980] paper we shall examine

various axiomatic constructions of the characteristic function using

only rational probabilities, while simulataneously weakening the other

axioms.

2. The Framework

Let K be a multiplier set consisting of all rationals in [0,1].

Let A be the set of permissible coalitions. Extend A to X, the

K-mixture space of coalitions.

Definition 2: A multiplier set K is a subset of [0,1] such that

0 and 1/2 belong to K, and for all x,y in K, (1 - x) and xy

are in M.

Definition 3: If A is an arbitrary set of alternatives then X

is the K-mixture set generated by A if K is a multiplier set and if

the conditions (i)-(v) in the definition of a mixture set are satisfied

for all a,b in A and all p,q in K.
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Let be a binary relation on X. For ease of future reference,

we shall lay down a grand list of axioms, subsets of which we shall

employ subsequently.

Xl X is completely ordered by

X2 For all R,S,T in X, the sets

G(T) = fm in K: R(m)S T), and

L(T) = fim in K: R(m)S T}

are closed in K.

X3 For all R,R' in X, if R R', then R(1/2)S - R'(1/2)S.

X3' For all R,R' in X, if R R', then

R( 112)S R' <112)S.

X4 For all R,S in X, and for all m,n in K, R S, m > n

implies R(m)S R(n)S

XvN For all R,S,T in X, if R S T, then there exist m,n in

K, mn <1, n >0, such that R(a)T t St R(n)T.

X5 If R,S in X, and R n S=0, then R S R(m)S for

m = [IRI / IR U si].

Definition 4: A measurable utility function is a function

u: X + IR, that is order preserving (R _ S iff u(R) > U(S)) and

linear (U(R(m)S) = m • u(R) + (1 - m) - u(S)), for any mE K.

", O ' " v.' ''; ,:; .; ..' ':i i ,""" ' >:.f::-.'" " T, '
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Theorem 2.1: A necessary and sufficient condition for the existence

of a measurable utility function on X is that axioms X1, X2 and X3

be satisfied. Moreover, this utility function is unique up to a

positive affine transformation.

Proof: See Shepherdson [1980) Theorem 2.3. I_

Suppose, now, that in addition to these axioms we impose Axiom X5.

If u is any member of the family of utility functions on X whose

existence Theorem 2.1 asserts, it is immediate that

u(RU S) ; [jIR/IRU SI] u(R) + (IsI/IRU sI] u(S).

Define C(u) to be the class of set functions v: X + IR such that

v(R) = c IRI • [u(R) - u(0)] + I di, c > 0, d, in IR, all i.
iE R

We can easily establish

Theorem 2.2: (a) If v is in C(u), then v is a characteristic

function.

(b) v' is in C(u) if, and only if, v' is a

positive affine transformation of v.

Proof: Clearly v(0) = 0.

Suppose R, S E X and R fS=0.
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V(R U S) =c. IR U S [u(R U S) - u( )] + d i
i ERUS

) c • IRU SI [(IRI/IRU SI) u(R) +

(IsI/IRu si) u(S)] + 7 di
iERuS

= v(R) + v(S).

This establishes (a). Suppose v' is in C(u). Then,

v,(R) = oR{ [u(R) -u)]+ I d'
v(R) = c'RI [u(R) - u()] + ,diER

v(R) =cIRI u(R) - u( )] + d
iER

so clearly,

v-(R) = a v(R) + biiE R

where a = c/c' and b = (cd'I - c'd )c.

Conversely, suppose v'(R) = a'v(R) + Y b'
iE R

Then, v'(R) = c'IRI [u(R) - u(.)] + 7 d'.
iGR

where c' = a'c > 0, and d'i = (aldi + b'i),

so v, is in C(u). I-I

Theorem 2.2 shows that it is possible to build up a characteristic

function from weaker assumptions on the preference ordering on the mix-

ture space. What is more interesting is that we can prove an exact
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analog of Theorem 1.1 for X and thus establish the entire axiometiza-

tion on new grounds:

Theorem 2.3: Let v be a given characteristic function. Extend v

to the M-mixture space of coalitions X by defining v(R(m)S) =

m v(R) + (1 - m) v (S). Define the relation t on X by

R(m)S ( R'(m')S' if, and only if, m(v(R)/IRI) + (1 - m) (v(S)/ISI)

m' (v(R')/IR;I) + (1 - m') (v(S')/IS'I). Then satisfies X1, X2,

X3' and X5. Further, if U denotes the class of utility functions

generated by r defined as above, v E C(u) for u E U.

Proof: Completeness and transitivity are obvious, since the

relation > on IR satisfies both. Define

G(T) = {m in M: R(m)S IT} and

L(T) = {m in M: R(m)S ! T1.

Let {m}Ik be a sequence in O(T), with a limit m in M. Then, for

all k,

mk(v(R)/IRI) + (1 - mk) (v(S)/IS!) - v(T)/ITI.

In the limit, the same inequality holds with m replacing ink, so

m E G(T). Hence G(T) is closed. Similarly L(T) is closed. Next,

suppose R ( S. Then, (v(R)/IRI ) (v(S)/ISI). Multiplying both sides

by m and adding (1 - m) (v(T)/IT I) does not change the inequality,

so indeed R(m)T S(m)T. Fourth, suppose R n S = 0. Since v is a

charateristic function, v(R) + v(S) ( v(R U S). So,
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(IRI/IR usl)(v(R)/IR usI) + (ISI/IR uSI)(v(S)/ISl) 4 (v(R uS)/IR uSI),

which means R(IRI/IR US)S t R US. Hence, all the axioms satisfied

and there exists a family U of utility functions on X, such that if

u and u' are both in U, then u' is a positive affine transforma-

tion of u. It is easy to see that, if we define C(u) as before for

u in U, then C(u) is invariant to the choice of the particular u.

Now, note that if we define u(R(m)S) = m(v(R)/IRI) + (1 - m).

(v(S)/IsI), then this is a measurable utility function on X, and is

hence in U. Defining C(u) on this basis, then

w E C(u) w(R) = c'IRI[v(R)/IRI - 0] + 7 di, c > 0, die IR which
iER

says just that v is S-equivalent to w, and is therefore in C(u).

1Ii

Theorem 2.3 completes the alternate axiomatization in the develop-

ment of the characteristic function. That this is a non-trivial

generalization is shown by Lemma 2.4, and the (obvious) fact that the

converse of the Lemma is false, since the new axioms require the prefer-

ence ordering only over rational mixtures.

Lemma 2.4: Axioms AI-A4 imply axioms X1, X2 and X3'.

Proof: Axioms Al and X1 are the same except that the latter

requires a weak ordering over only rational mixtures, so Al + X1.

Axiom X3' is but a special case of axiom A2 for p = 1/2. All that

needs to be shown, then, is that axioms AI-A4 imply that the sets

G(T) = {m in M: R(m) S T}, and L(T) = {m in M: R(m)S j TI are
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closed in R. A little thought shows that In the above context, all the

possible oases can be covered in the following four cases.

(i) R T, S T (iii) R - S" T

(ii) R T, S T (iv) R T S.

In case (I), we have

R } T => R(.)S } T(.)S for all a in (0,1]

- s( - m)T

T(1 - u)T . T,

and for m = 0, clearly R(m)S - T(.)S. So, G(T) = M and L(T) =

which are trivially closed in M.

Cases (ii) and (iii) are similarly disposed of. Case (iv) is a bit

more involved: From A4, thre is m in (0,1) such that R(m)S - T.

So [R(m)S](m')S ~ T(m')S for all m' in (0,1]

iT

or R(u.n')S i T for all m' in (0,1]. Again

[R(m)S](m")R - T(m")R all m" in (0,1)

or R(mm" + (1 - m"))S T for all m" in [0,1]. Since m' ( m for

all m' in (0,1], and mm" + (1 - m") ) m for all m" in [0,1] we

seetha t G(T) - {n in M: n ) ml, and L(T) fn in M: n 4 m}.
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Regardless of whether m is in M or not, these sets are clearly

closed in M. I]

Another axiomatic system on which we could base the characteristic

function is provided by the following theorem and similar constructions

of those of Theorem 2.4. The details are left to the reader.

Theorem 2.5: It is necessary and sufficient for the existence of a

measurable utility function on X that the following axioms be

satisfied: X1, X3', X4 and XvN.

Proof: By Shepherdson [1980], Theorem 5.2 axioms X4 and XvN

together imply X2, hence the necessity and sufficiency. II

There are then, at least two possible axiomatizations that are

weaker - and, therefore more general - than the classical axiomatiza-

tion. Note also that if we wish to build up the characteristic function

as (essentially) an affine transform of a measurable utility function

when restricted to pure coalitions, the above conditions are, in some

sense, "minimal". The conditions for the existence are both necessary

and sufficient. In the following section we will examine possible

methods of further weakening the axioms on the preference ordering. In

particular, we shall look at (a) the necessity of completeness of the

ordering and (b) the necessity of measurability as a property of the

utility function. These topics are intimately linked - completeness is

necessary for the utility function to be measurable.
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A final remark before we close this section Theorems 1.1 and 2.3

showed that if we started with a characteristic function v, and defined

an ordering on X using v in a rational manner, the ordering would

satisfy all the axioms required for the existence of a utility function.

This utility function, would in turn generate a family of characteristic

functions S-equivalent to v. These theorems require no more than the

existence of the characteristic function.

3. Further Generalizations

The alternate set of axioms we have presented reduce tremendously

the requirements each player's preference ordering must satisfy. At one

level, however, this does not seem to be much of an improvement:

employing a mixture set that is denumerable rather than uncountable does

not take away the fact that we are still insisting on a very large

number of comparisons. Two ways to Improve this situation suggest

themselves. First, we could try developing the utility function on the

basis of preference axioms that do not impose completeness and then

develop the characteristic function on this basis, possibly in a manner

similar to the method we adopted above. Alternately, we could abandon

the axiomatic definition of the utility function, and attempt to devolop

the characteristic function with the utility function as the primal

concept, and examine the alternate utility functions we could work

with. This approach seems less satisfying intellectually, but carries

the advantage of helping us understand the precise nature of the link

between the characteristic function of a game, and the attitude towards
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risk of the players - which is, in fact, one of the most important

things the utility function tells us. We examine both these approaches.

3.1 Incompleteness of Preferences and The Characteristic Function

Completeness, as was stated in the previous section, is necessary

for the existence of a utility function on the mixture space that is

order preserving and linear. Without it, as we shall note in Theorem

3.1, we lose the order preserving property. This in itself does not

seem very important. It seems plausbile that a one-way utility function

(defined as a function U: X + IR that satisfies the condition

u(R) ), u(S) if R S) might serve our purpose if we insist on

completeness of preferences at least on the space of pure coalitions.

As one might expect, completeness on this subspace turns out to be

necessary for the definition of a characteristic function via a utility

function - an interesting link between the characteristic function of

the Same and the preferences of its players. We shall establish two

results before continuing this discussion:

Theorem 3.1: Let X be the set of simple rational-valued

probability measures on a finite nonempty set A. Let 1 be a binary

relation on X that satisfies, for all P, R, S, T, in X:

Pi is irreflexive.

P2 If p is a rational in (0,1), then P R and S T

implies P(p)S I R(p)T.

%~ ~ ~
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P3 P R, S T implies there exists a rational p in (0,1)

such that P(p)T / R(p)S.

Then there exists a one-way utility on X.

Proof: See Shepherdson, [1980], Theorem 6.1. II

The interpretation of these sets is the same as before, but with a

slight twist: while A remains the space of pure coalitions, X is

the set of all functions P: A * Q satisfying P(A(i)) ) 0, for all

I, and I P(A(i)) = 1. (Here, A(i) refers to the i'th member of A
ME

and where I is an index of the members of A.)

Lemma 3.2: In order for a characteristic function to be defined via

a utility function, it is necessary that A be completely ordered.

Proof: The counter-example is constructed as follows: Let

N = 11,2,3 and A = {1,2,3,12,13,23,123). Define an incomplete

ordering on A by: 1 2 t 3, 123 t 12 13 23. For R,S in X

such that R,S do not assign probability 1 to any element of A, Let

R 5 S. Also, for R in {X - Al, let R t 1, and R ! 123. Note that

axioms PI-P3 are satisfied and there is a one way utility on X. In

fact there are several and it is not too difficult to come out with one

that will serve our purpose. Consider, for example, the function given

by:
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u(1) - 4, u(2) - 3, u(3) = 2,

u(123) = 4, u(12) = 3, u(13) = 2, u(23) = 1,

u(R) - 5 for all R not in A, u(0)= 0.

(We assume that every set is preferred to the empty set.) Clearly, for

any positive affine transform of the restriction of u to A, v(13) <

v(1) + v(3). Thus the restriction cannot be a characteristic function.

I-I

Theorem 3.1 and Lemma 3.2 require conditions that are far weaker

than any we imposed in the previous section. We have paid for this

weakening in the loss of the most powerful features of the utility

function: its order preserving and linearity properties. The first is

not very important if the conditions of Lemma 3.2 are satisfied. The

second loss is crucial.

Recall that a characteristic function must satisfy the condition of

super-additivity. This was ensured under the previous axiomatization by

the combination of Axiom X5 and the linearity of the utility function.

Without linearity, the mere imposition of Axiom X5 is insufficient to do

the trick. To see this rigourously, let f: IR * IR be a transform

of u. Then, if F is monotone, we know from Theorem 3.1 and the

additional imposition of Axiom X5 that

R I S -> f(u(R)) > f(u(S)), and

if p - IRI/IR U SI), f(u(R U S)) - f(u(R(p)S))

!111131 W t a
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For the transform f to be a characteristic function, we need

f(u(0)) = 0, and

f(u(R us)) ) f(u(R)) + f(u(S)).

Note that previously we had defined f to be a linear transform of

IRI * u(R), and linearity of u guaranteed that this was a character-

istic function. It is obvious that, in this case, there In no unique

functional f that will, for all one-way utility functions satisfying

the Axioms of Theorem 3.1, ensure that the transformation is a

characteristic function.

What is required, therefore, is an axionatization that will yield

linearity of the utility function through preferences that are only

partially complete. At first sight, this seems an impossible

requirement, for as we have noted before, a measurable utility function

cannot exist that is not based on completeness. Completeness, however,

provides two properties - order-preservation and linearity - only the

second of which we need. It would be sufficient for our purposes if the

utility function were one-way and linear. But we know of no procedure

to construct such a utility within the framework of m-mixture

extensions of finite sets of coalitions. Therefore an extension of our

axioatization to incomplete orders on A remains an open problem at

this time.*

* There is of course, the result of B. Peleg that actually constructs a
one-way utility from a partially ordered topological space of alterna-
tives where the partial ordering on the space is assumed to be
continuous, separable, spacious and strict (cf. B. Peleg (1970] for the
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3.2 Attitudes to Risk and The Characteristic Function

In Classical utility theory an agent's attitude to risk is reflected

in the curvature of his/her utility function. To illustrate, consider

the following problem facing the agent: The agent has the choice of

entering or not entering a lottery. If the gambling option is chosen,

the agent receives a payoff of x with probability p, and y with

probability (1 - p). If the agent chooses not to gamble, a certain

payoff of (px + (1 - p)y) is received.

The agent will choose to gamble, be indifferent to the lottery, or

gamble according as the utility received from gambling is greater, equal

to, or less than the utility received from the certain payoff. If x

and y are reasonably close together, then it is likely that the shape

of the agent's utility function will not alter dramatically (in the

sense of changing shape from concave to convex). Under the assumption

that the agent possesses a measurable utility function, the agent will

gamble if

u(px + (1 - p)y) < p • u(x) + (1 - p) • u(y).

The agent will not gamble if the inequality is reversed, and will be

indifferent to the two options if equality holds. In obviously

suggestive terminology, we that the agent is risk loving in the first

case, in the second that the agent is risk-averse, and in the last that

definitions of these terms). But the function provided by Peleg's con-
struction is not linear and we cannot find the needed additional require-
ments to insure linearity in Peleg's constructions at this time. Peleg's
construction does not work for weakly (i.e., non-strict) partially
ordered topological spaces. (cf. Remark 4.2 of Peleg [19701, p. 95)

R ~ .
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he is risk-neutral. It is clear that risk-aversion implies local

concavity of the agent's utility function, risk-loving implies local

convexity, and risk-neutrality implies that the utility function is

locally affine.

Since we have (implicitly) seen much of the relation between the

utility and characteristic functions, we will not dwell on the obvious

here. What we will mention is a rather surprising connection between

the two concepts. Let us assume the measurability of the utility func-

tions of the players in a game and proceed to define the characteristic

function from the utility function exactly as in Section 2. Then it is

the case that the agents cannot be strictly risk-loving uniformly on

their domains. A simple computation shows that the violation of this

condition will result in the falsification of Axiom X5, and therefore

the transform of the utility function no longer satisfies the super-

additivity condition. Hence, such a transform cannot be a character-

istic function.

4. Conclusions

We have seen that the classical model has a few shortcomings that

make the axioatization somewhat unrealistic. The alternate axiomatiza-

tion that we presented, removed the requirement that the players'

preferences had to be defined over all probability mixtures, even when

these probabilities were irrational, replacing it with a system where we

only required the preferences to be complete over a mixture space of

rationals. It was shown that all the results of the classical framework

continued to hold under this weaker framwork. Avenues of further gener-
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alization were explored with not very heartening results. It does not

seem possible to build up the axiomatic system on preferences which are

complete only on a very limited subset of the mixture space - the set of

pure coalitions. An interesting link between the characteristic func-

tion and the attitude of risk to the players was observed where it was

shown that it is not possible that the characteristic function could be

defined from the preferences of players who are strictly risk loving

uniformly on the domain of their utility functions.
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